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Summary:    The current disparity that exists among models of the climate system in their response 
to projected increases in greenhouse gases provides a measure of uncertainty in the model development 
process. A large part of this uncertainty is likely related to specification of model parameters. We estimate 
a lower bound to this part of the uncertainty as may be inferred from an ensemble of model configurations 
made from a single model (the NCAR CAM3.1 atmospheric GCM).  The choice of ensemble members is 
constrained by a stochastic, Bayesian based, importance sampling strategy whose likelihood function 
includes a normalized, multivariate measure of model skill that quantifies the distance among seasonal 
climatologies of model predictions and fifteen observational/reanalysis data products. We consider the 
effects of six parameters important to clouds and convection. The top six performing parameter sets 
improved model skill by 7% with nearly identical skill scores, but for different reasons related to the wide 
range of selected parameter values.  These model configurations were chosen for estimating the effect of 
parametric uncertainties on the predicted global warming response to 2xCO2. Five of the six model 
configurations had a 2xCO2 near surface air temperature sensitivity of 3 or 3.1 degrees with the final member 
having a sensitivity of 3.4 as compared to the 2.4 degree sensitivity of the default model configuration. 
Although the range in sensitivities was quite narrow after parameter values have been systematically 
constrained by observations, the regional climate predictions exhibited significant uncertainties up to 25% 
of the climate change signal for predictions of surface air temperature and up to 160% of the signal for 
precipitation. This calculation demonstrates the potential of using observations to substantially reduce climate 
model prediction uncertainties with a more formal method of multivariate model tuning. It also provides 
an estimate of the upper bound for single-model prediction skill, particularly for regional climates.
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Motivation
• The uncertainty demonstrated by climate model projections of future climate is equal to 100% of the signal 
        (i.e. ~3 degree warming with a 95% likelihood between 2 and 6 degrees when CO2 is doubled). The size of 
        this uncertainty has remained virtuly unchanged over the many generations of model evaluation and 
        improvement.

• This reality raises important questions about 1) whether this uncertainty is fundamental to the problem 
        and 2) the nature of the processes is responsible for this uncertainty. The multiple differences among 
        models preclude an easy analysis of these questions.

Science Objectives
• Quantify uncertainties in the climate model development process by testing choices in CAM3.1 model 
       parameter values that may only be indirectly constrained by observations.

• Identify an ensemble of climate model configurations that represent these uncertainties and the constraints 
       provided by observations of climate over the past decade. 

Methods
The choice of ensemble members is constrained by a stochastic, Bayesian based, importance sampling strategy 
whose likelihood function includes a normalized, multivariate measure of model skill that quantifies the distance 
among seasonal climatologies of model predictions and fifteen observational/reanalysis data products. We 
consider the effects of six parameters important to clouds and convection:

• Use of stochastic sampling is only required when effects of model parameters are non-linearly related 
       to one another. We have confirmed this non-linearity exists and likely includes multiple minima in skill 
       scores, indicating observations provide non-unique constraints for climate model development.

• We use Multiple Very Fast Simulated Annealing as an efficient approximation to more general Monte-
       Carlo Markov Chain type sampling strategies. This sampling strategy is several orders of magnitude more 
       efficient and is essential to making this problem tractable given the computational expense of a typical 
       climate model. 

• Sampling strategy includes a search for an appropriate normalization of the skill score which is required 
       when correlations exist among the multiple observational constraints of model performance. 

Model
NCAR CAM3.1 is used to make an 11-year control simulation of the present-day-climate. The model is forced 
with observed monthly sea surface temperature (SST) and sea ice extent from 03/1990 to 02/2001. The model 
uses standard T42 horizontal resolution (roughly 2.8° x 2.8°) and 26 vertical levels. For global warming 
experiments, CAM3.1 is coupled to a slab-ocean to approximate the thermodynamic response of the upper 
ocean to increased radiative forcing. 

Model Evaluation
• Model-data biases are projected onto orthogonal modes of variability (EOFs) in six 30 degree latitude bands 
       in each of the 4 seasons. Model-data biases are normalized within each band by the amount of variability 
       of each mode.

• The EOF-based measure of model performance weighs more strongly modeled-observational differences 
        that occur over regions where these differences are large and natural variability is well defined.

• Comment: The definition of the skill score should include scientific value judements concerning the 
       balance of processes that are required to simulate climate and its sensitivity to change. The current effort 
       only specifies an equal weighting among climatologies (long term averages) of many fields a model 
       predicts for which there exists observations or reanalysis “data”.

Results 1: The top six performing parameter sets improved model skill by 7% with nearly identical skill scores, but 
for different reasons related to the wide range of selected parameter values. 

Discussion: We were encouraged to see that the top six model configurations were representative of the uncertainties 
in estimates of the posterior distribution (figure 1). We are only about a quarter of the way through sampling. Details 
of distributions may change substantially. However top six models likely representative of the uncertainties. 
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Results 2: An ensemble of 6 model configurations representative of the uncertainty in defining six model parameters 
show nearly identical sensitivity to a doubling of atmospheric carbon dioxide. 

Discussion: These results suggest one of two things: 1) That the spread among climate models is not fundamental to the 
climate model development process. With an objective analysis, one could make better use of observations to constrain 
modeling uncertainties. Or 2), we have not identified the primary sources of modeling uncertainty. 6 parameters down, 
many other suspects to go. 

0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

1

2

3

4
56

Third Assessment Report
Second Assessment Report
CAM3.1

Pr
ec

ip
ita

tio
n 

C
ha

ng
e 

(%
)

Temperature Change (  C)o

Response of Different Climate Models 
to a Doubling of CO 2

Results 3: Although the range in sensitivities was quite narrow after parameter values have 
been systematically constrained by observations, the regional climate predictions exhibited 
significant uncertainties up to 25% of the climate change signal for predictions of surface air 
temperature and up to 160% of the signal for precipitation.
 
Discussion: This result underscores the challenge in predicting regional climates. It has been 
previously assumed that these uncertainties are related to uncertainties that are manifested at the 
global scales, however we show that this is not true. 

Results 4: Although we only targeted reducing biases in time-averaged quantities, there were 
tremendous gains in predicting precipitation extremes. 

Discussion: Although climate models get the right total amount of rainfall, model’s rain too lightly 
too frequently. The dramatic improvements we found still miss the heavy rainfall events typical of 
continental thunderstorms (particularly over the continental US and South America.). Thus our 
results point to missing physics in the current generation parameterizations for getting small scale 
deep convection. The predictions from models that miss these tails, seriously underestimate how 
global warming will affect precipitation extremes.

(a) TRMM likelihood of light rain                      (d) TRMM likelihood of moderate to heavy rain

(b) CAM likelihood of light rain                       (e) CAM likelihood of moderate to heavy rain

(c) CAM-TRMM likelihood of light rain                  (f) CAM-TRMM likelihood of moderate to heavy rain
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Table 2. Names and descriptions of parameters important to 
clouds and convection in CAM3.1  

Parameter Description 

RHMINL critical relative humidity for low cloud formation 

RHMINH critical relative humidity for high cloud formation 

ALFA initial cloud downdraft mass flux 

TAU rate at which convective clouds consume available potential energy 

ke environmental air to cloud entrainment rate coefficient 

c0 deep convection precipitation production efficiency parameter 
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Figure 1. Estimates of the PPD for 6 parameters of CAM3.1 important to clouds and convection (see table 2). 
The histograms include 95 of the 250 experiments whose cost values showed an improvement of over the 
default model configuration. The parameter values of the default model are given by a red asterisk (*). The 
values of the top performing six parameter sets are labeled by the particular line number that produced them.

Table 1.  Breakdown of field components contributing 
to cost function. All components are weighted equally 
except for the three cloud fields which are each weighted 
by a third.  Color indicates fields that are at least 5% less 
(green) or 5% more (red) than the default configuration. 

Figure 4. Ratio of the number of rainfall events with a rain rate in the range 0.1-1 mm/hr to the total number of rainfall events 
in (a) TRMM, (b) CAM and (c) CAM-TRMM. Ratio of the number of rainfall events with a rain rate in the range 2-5 mm/hr to the 
total number of rainfall events in (d) TRMM, (e) CAM) and (f ) CAM-TRMM.

Figure 5. Regionally aggregated PDF of rain rate for ITCZ in TRMM (black line) and deault CAM and alternate configurations 
4, 5,  and 6 (color lines).

Figure 2. Response of global mean annual mean surface air temperature and precipitation within different climate 
models to a doubling of atmospheric CO2 concentration. Second and Third Assessment Reports refer to results
presented in the Intergovernmental Panel on Climate Change (IPCC 1995 and 2001).

Figure 3. Top panels: Average response among 6 model configurations identified in Figure 1 to a doubling of 
atmospheric CO2 concentrations for surface air temperature (left) and precipitation (right). Bottom panels: 
Percent deviation among ensemble members as a fraction of the local signal. Masked areas in precipitation
indicate regions where precipitation change was not significantly different from natural variability.

Conclusion: This calculation demonstrates the potential of using observations to substantially reduce climate 
model prediction uncertainties with a more formal method of multivariate model tuning. It also provides 
an estimate of the upper bound for single-model prediction skill, particularly for regional climates.
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